
Co-Simulation of an 
Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince 
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin’s Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/


QEMU: Machine emulator. In this project, simulates a Zynq-7000 processor.

SystemC: C++ classes used for event driven simulation, used in tandem with QEMU to provide co-simulation.

LibRemotePort: Socket-work in C++ that allows systems to connect over Unit sockets, used for Host system → 
SystemC communication

Linux: Linux IIO subsystem, Linux Kernel Modules, Linux IO remapping

Server: Ubuntu 18.0.4 Server

Project Management: Github - Version Control, Trello - Task management, and Discord - Collaboration

Industrial I/O: description

Hardware/Software/Technology Platforms used



Hardware/Software Co-Simulation

● Simulate the processor your code is running 
on (Embedded ARM Cortex-A9)
○ Processor emulator (QEMU)
○ Buildroot Linux

● Simulate the hardware interactions and mock 
all calls made
○ Hardware implementation (SystemC)
○ Hardware transaction modeling (TLM)

● Connect the two simulated environments 
(FPGA PS-PL connection)
○ Xilinx Remote Port



Problem Statement

● Steep learning curve for beginners
○ Few documented example projects
○ Lacking basic documentation

● Desire for additional flexibility
○ Once the simulation has been setup, 

difficult to manipulate data “Generated” by 
simulated hardware

○ Desire to “feed” data into the system from 
an external source

○ Processing System (QEMU) being none the 
wiser, assumes it is a real device



Intended Users

● Corporations who simultaneously 
develop hardware/software solutions
○ Aerospace, Defense, Industrial 

Automation, Automotive
● Users looking to extensively test 

hardware and software independently 
of one another

● People interested in applying 
Co-Simulation to their own project 
who are stymied by the barrier of 
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png


Use Case Example

● You are a software engineer developing a 
hardware driver to control a new 
temperature sensor
○ Interfacing with it over an I2C interface
○ You have the technical documentation
○ You have v0.1 of the driver written
○ Now What?

● How can you test your driver code in a 
simulated environment before a 
engineering sample of the sensor has 
been produced?

IMAGE



● Documentation
○ Document an initial environment setup 

walkthrough
○ Create an additional demo to for a more 

complex system
● External Data Source/Modeling Tool

○ IIO device created in software, configured 
to mock an accelerometer

○ Drive a simulated IIO device via a SystemC 
model with static data

○ Develop Remote port custom 
communication tunnel for external data 
source tool

Functional Requirements/Deliverables



Non-Functional Requirements

● Author supplemental documentation for Xilinx 
technologies utilized

● Contribute all to centralized (Xilinx 
Confluence or otherwise) documentation 
body

● Documentation describing in full our 
I2C/Remote Port implementation resources 
utilized

● Implement additional examples with other 
protocols in our custom SystemC device 
server

● Support multiple device simulation 
simultaneously in the SystemC device server



Detailed Design - Documentation

● Generate Documentation that 
describes how to setup and build 
existing Demos

● Explain how to modify existing 
Demos to extend the 
hardware/software capability

● In depth documentation on new 
functionality that describes use 
cases, setup, and modification

● Receive feedback from development 
community and iterate



Co-Sim System Clock Demo



PPM State Machine Demo



Detailed Design - Novel Linux Device 
Implementation

● Write a state machine in SystemC to model bus 
transactions

● Pipe the SystemC memory mapped registers into the 
IIO subsystem

● Model backend value registers of IMU using SystemC + 
remote interconnect to host to allow host to control 
IMU data values

● Demonstrate and document a working mixed 
simulation consisting of
○ QEMU, running Buildroot Embedded Linux with IMU Kernel 

Module and front end test application
○ SystemC modeling an I2C bus with one or more devices attached
○ Host system modifying SystemC parameters on the fly to vary 

IMU data



IIO Demo

● Full out of tree buildroot setup
● 2 static channels, one random 

channel, 1 sine wave channel
● IIO driver has been configured 

to read from IO memory
● End-to-end demonstration of 

cosim->driver->back to host 
interaction

Buildroot SystemC Host

https://docs.google.com/file/d/1TbxZWW4uAQj-hf4F3xqPDB70Q1CZk73F/preview


Remote-Port Demo

● QEMU instance running 
Buildroot linux with Zynq-7000 
device tree

● Host application creates Unix 
socket for SystemC

● SystemC connects to both 
systems and maintains 
writable memory space

● Read and write from either 
device



Testing

● Individual model/demo (Remote-Port and IIO)
○ Manual verification using raw memory accesses (devmem)
○ Automated tests with custom simulation testing applications

● Demo Documentation
○ Clean code examples
○ Rich documentation of setup and running demos
○ All documentation reviewed by team, client, and open-source community
○ Committed documentation tested and reviewed by protocol authors

● Process
○ Tests conducted in controlled Co-Simulation environments
○ All done in latest SystemC release
○ Started with basic static value returns to frontend from backend SystemC
○ Working system “bootstrapped” to DUT frontend/backend



Constraints & Considerations

● Open-source community sentiment to our proposed 
additions
○ Welcoming and positive from our numerous 

interactions
○ Generous suggestions and critiques

● Unfamiliarity with simulating technologies
○ Internal team documentation for basic demo 

progressions
○ Team requirement to complete basic demos

● Minimal documentation for Xilinx implementations
○ Reaching out to experts in development community
○ Reverse engineering implementation source
○ Evaluating responses from compliant 

implementations



Community Impact

● Documentation put to 
work quickly!

● Proved just how important 
effective documentation is

● We were able to identify 
shortcoming in our 
existing documentation 
and fill those gaps

● Within 2 weeks of 
publication



Thank You For Listening!

Questions?



Background: QEMU

● Processor emulator that allows 
execution of programs for 
specified board/processor

● Allows us to simulate a and ARM 
Cortex A9 for a Zynq-7000 FPGA 
SoC platform

● Can run embedded Linux or bare 
metal programs
○ We are using Buildroot to compile and 

assemble an Embedded Linux Boot 
Image and File System



Background: SystemC-TLM

● Hardware modeling language that uses plain 
C/C++ syntax to model hardware systems

● Allows complete simulation of Memory Mapped 
hardware, AXI systems, and more

● Libsystemctlm-soc: Xilinx SystemC library that 
provides an interface between a SystemC 
modeling environment and a Zynq-7000, Zynq 
Ultrascale+, and Versal ACAP computation 
platforms



Prototype Implementations

● Implemented basic remote port application
○ Still reverse engineering protocol
○ Documentation and consistent operation still in progress

● PPM demo working as intended
○ Documentation needed
○ Cleanup and publication needed

● Documentation
○ Basic walkthrough 3rd revision completed
○ Needs to be pushed for additional feedback

● IMU Driver
○ Still being compiled into the Buildroot kernel



Problem Statement

The existing co-simulation environment provided by Xilinx, which utilizes a 
SystemC TLM and QEMU, lacks sufficient documentation for a newer user to 
learn and use it. It also has opportunities for an expanded interface to allow 
more robust testing



Task Contributions of Each Member (Each person 
fill out)

Matt: Open-Source Community contact, demo documentation, 
remote-port/communication protocol architecture, administrative documentation

Braedon: PPM SystemC state machine / demo, IMU kernel module compilation, 
Threading demo build, version control configuration

Cody: Also made contact with open-source community, initial demo set-up, 
documentation for original demo, technology research, IMU research/set-up, 
note-taker

Spencer: Website updating, IMU research


