Co-Simulation of an
Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin's Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/

Background: QEMU

e Processor emulator that allows
execution of programs for
specified board/processor

e Allows us to simulate a and ARM
Cortex A9 for a Zyng-7000 FPGA
SoC platform

e Can run embedded Linux or bare

metal programs
o We are using Buildroot to compile and
assemble an Embedded Linux Boot
Image and File System

[test@donizetti ~]1$ gemu-arm ./ls --color /
bin 1ib64

lib sbin system-upgrade
[test@donizetti ~]$ uname -a
Linux donizetti 4.6.7-300.fc24.x86 64 #1 SMP Wed Aug 17 18:48:43 UTC 2016 x86 64
x86 64 x86 64 GNU/Linux
[test@donizetti ~1$ file ./1s
./ls: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked
, interpreter /lib/1ld-linux-armhf.so.3, for GNU/Linux 3.0.0, stripped
[test@donizetti ~1$ i

Background: SystemC-TLM K\
SYSTEMG

e Hardware modeling language that uses plain
C/C++ syntax to model hardware systems

e Allows complete simulation of Memory Mapped
hardware, AXI systems, and more

e Libsystemctim-soc: Xilinx SystemC library that
provides an interface between a SystemC ,
modeling environment and a Zynq-7000, Zynq
Ultrascale+, and Versal ACAP computation
platforms

Hardware/Software Co-Simulation

e Simulate the processor your code is running on (Embedded ARM Cortex-A9)
o Processor emulator (QEMU)
o Buildroot Linux
e Simulate the hardware interactions and mock all calls made
o Hardware implementation (SystemC)
o Hardware transaction modeling (TLM)
e Connect the two simulated environments (FPGA PS-PL connection)
o Xilinx Remote Port

AXI

K

LibSystemCTLM-SoC M_AXI
Your IP

Remote ¢Remote PortIPC 5 Remote
Protocol

Protocol
S_AXI

Xilinx QEMU |

Mixed Simulation Environment

Problem Statement

e Steep learning curve for beginners
o Few documented example projects
o Lacking basic documentation
e Desire for additional flexibility
o Once the simulation has been setup,
difficult to manipulate data “Generated” by
simulated hardware
o Desire to “feed” data into the system from
an external source
o Processing System (QEMU) being none the
wiser, assumes it is a real device

How to set up and run the Co-Simulation Demo

This demonstration shows how to compile and run the Co-Simulation demo of Buildroot in QEMU with a simulated device in SystemC. This
configuration is tested working for Ubuntu 18.0.4 and assumes that a cosim directory is created in your home directory. This walkthrough also
assumes that the device being emulated by QEMU is the Xilinx Zyng-7000 SoC. This SoC seemed like a good candidate but the concept can
apply to any QEMU machine which plugs in a compatible remoteport bus interface.

Dependencies
Below are the dependencies needed to compile all the libraries in this demo:

sudo apt update
sudo apt install cmake gmake gcc gemu-kvm gemu-system gemu-user-static verilator

Setup and Compilation
Run these commands to clone and build the necessary repos (~/cosim assumed as the base directory).
Create the base directory

mkdir ~/cosim

SystemC Setup

cd ~/cosim

SYSC_VERSION=systemc-2.3.2

wget https://www.accellera.org/images/downloads/standards/systemc/systemc-2.3.2. tar.gz
tar xf ${SYSC_VERSION}.tar.gz && cd ${SYSC_VERSION}/

Intended Users i Gollins
Aerospace

e Corporations who simultaneously

develop hardware/software solutions
o Aerospace, Defense, Industrial
Automation, Automotive

e Users looking to extensively test
hardware and software independently
of one another

e People interested in applying
Co-Simulation to their own project
who are stymied by the barrier of
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png

Use Case Example

e You are a software engineer developing a
hardware driver to control a new

temperature sensor
o Interfacing with it over an I?C interface
o You have the technical documentation
o You have v0.1 of the driver written
o Now What?

e How can you test your driver code in a
simulated environment before a
engineering sample of the sensor has
been produced?

Functional Requirements/Deliverables

e Documentation
o Document an initial environment setup
walkthrough
o Create an additional demo to for a more
complex system
e External Data Source/Modeling Tool
o Model an I>C Bus in SystemC and
corresponding test application
o Drive a simulated IMU device over I?C with
static data
o Develop Remote port custom
communication tunnel for external data
source tool
o Demonstrate an off-the-shelf Linux IMU
driver running on QEMU, working with
modeled hardware

PR has been submitted, being revised

PPM demo working, publishing soon

Initial research completed

Initial research completed

Test application with decoded packets working

IMU and driver selected, test application in
development

Author supplemental documentation for Xilinx

technologies utilized

Contribute all to centralized (Xilinx
Confluence or otherwise) documentation
body

Documentation describing in full our
12C/Remote Port implementation resources
utilized

Implement additional examples with other
protocols in our custom SystemC device
server

Support multiple device simulation
simultaneously in the SystemC device server

Non-Functional Requirements

How to set up and run the Co-Simulation Demo

This demonstration shows how to compile and run the Co-Simulation demo of Buildroot in QEMU with a simulated device in SystemC. This
configuration is tested working for Ubuntu 18.0.4 and assumes that a cosim directory is created in your home directory. This walkthrough also
assumes that the device being emulated by QEMU is the Xilinx Zynq-7000 SoC. This SoC seemed like a good candidate but the concept can
apply to any QEMU machine which plugs in a compatible remoteport bus interface.

Dependencies

Below are the dependencies needed to compile all the libraries in this demo:

sudo apt update
sudo apt install cmake gmake gcc gemu-kvm gemu-system gemu-user-static verilator

Setup and Compilation
Run these commands to clone and build the necessary repos (~/cosim assumed as the base directory).
Create the base directory

mkdir ~/cosim

SystemC Setup

Hardware/Software/Technology Platforms used

QEMU: Machine emulator. In this project, simulates a Zyng-7000 processor.

SystemC: C++ classes used for event driven simulation, used in tandem with QEMU to provide
co-simulation.

LibRemotePort: Socket-work in C++ that allows systems to connect over Unit sockets, used for
Host system — SystemC communication

Server: Ubuntu 18.0.4 Server

Project Management: Github - Version Control, Trello - Task management, and Discord -
Collaboration

Co-Sim System Clock Demo

bgiblin@sddec21-02:~/cosim/systemctlm-cosim-demo$ LD_LIBRARY_PATH=~/cosi
m/systemc-2.3.2/src/.1ibs/ ./zynq_demo unix:${HOME}/cosim/buildroot/hand
les/qemu-rport-_cosim@e 1000000

SystemC 2.3.2-Accellera --- Mar 11 2021 21:24:50
Copyright (c) 1996-2017 by all Contributors,
ALL RIGHTS RESERVED
open socket
connect to /home/bgiblin/cosim/buildroot/handles/qgemu-rport-_cosim@e

Info: (I702) default timescale unit used for tracing: 1 ps (trace.vcd)

PPM State Machine Demo

M Recefver

-en=4

Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel

O mmn ~ 1

PV A WNEOUVAEWNREDD

8x80080085DC
0x060000320
Ox000003ES
Ox000004E2
0x060606007D0
0x080606006D6
8x8008005DC
0x060000320
Ox000003ES
Ox000004E2
0x060606007D0
0x080606006D6

N..NANNANQANCNC

Info:

Info:

Info:

Info:

T Lm .

PPM_IN:

PPM_IN:

PPM_IN:

PPM_IN:

MDAt TAI.

Reading

Reading

Reading

Reading

Dnm Al e~

Count

Count

Count

Count

La AN

Detailed Design - Documentation

e Generate Documentation that
describes how to setup and build
existing Demos

e Explain how to modify existing
Demos to extend the
hardware/software capability

e In depth documentation on new
functionality that describes use
cases, setup, and modification

e Receive feedback from development
community and iterate

docs/getti

® -

&

rc-matthew-I-weber reviewed

ng-started-guide.md

+ ./configure --target-list="arm-softmmu,aarch64-softmnu,microblazeel-softmmu” --enable-fdt --disable-
kvm --disable-xen
+ make

-matthew-I-weber

- make

+ make ~3$((*nproc’+1))

Mluckydwyer Author

This is a good suggestion for ensuring people who copy and paste the commands can take advantage of faster
compilation but overall it adds complexity to a demo that is trying to lay everything out in simple terms. Do you think
it provides enough benefit to outweigh the complexity it adds?

Documentation Status

e We have reached out to Xilinx Co-Sim
Repository Maintainers and have
established communication

e Submitted Pull Request for a running a
“getting started demo”

e Have been iterating over the pull
request to complete suggestions made
my maintainers

e Contributes towards our fulfillment of
improved end-user documentation
deliverable

Getting Started Documentation

Miuckydwyer added 3 commits

(]
(&)
(&}

@ Miuckydwyer

@ Miuckydwyer marked

(€]

pull request as ready for review

e provided in

uide and the LMAC demo

Detailed Design - I°C IMU Implementation

e Write a state machine in SystemC to model an I?C bus
|dentify a real IMU with a Linux driver that we will use as
our test device

e Model backend value registers of IMU using SystemC +
remote interconnect to host to allow host to control
IMU data values

e Demonstrate and document a working mixed

simulation consisting of
o QEMU, running Buildroot Embedded Linux with IMU Kernel
Module and front end test application
SystemC modeling an I?C bus with one or more devices attached

Host system modifying SystemC parameters on the fly to vary
IMU data

[°C IMU Implementation Status: SystemC

e Built and tested state machined consisting of a Pulse Position Modulation
encoder / decoder

e Executed a bare metal driver & runner program developed independently as
a course project, demonstrating Mixed Simulation functioning with no

software changes needed

e Remote Port Protocol Identification and Research
o Identified Xilinx SystemC SoC Remote Port library as a candidate for SystemC to Host

communications
o Have established a one directional handshake between SystemC and host program, verifying

read/write connectivity between the two

Test Plan

e Documentation will be tested by ensuring it conforms to all standards set

forth by repository maintainers

e Documentation will also be tested by Collins Intern teams that attempt to
follow our demos and work on tangential projects

e All commits will pass code review by repository maintainers, ensuring that
we meet the standards outlined by each repository

Test Plan

e Each module will be unit tested to the fullest extent possible
e Integration testing will be conducted in stages with known working system

states
e Each of the modules, along with the full demonstration of our working

system, will be documented to ensure quality of testing.

—————N——————————————
——————————————N© No ‘
L Integrate with Co- o i A\
Unit Test with gTest e 2 Sim, and test with > ——ves ESLWILN COMPIELE ves—] ()
platform
DevMem N’
Passes?

Design Module Passes? Passes? Verified

Constraints & Considerations

= Confluence

e Open-source community sentiment to our proposed
Log in to continue to:

additions Co-simulation
o Welcoming and positive from our numerous
interactions

|Enter email

o Generous suggestions and critiques Continue
e Unfamiliarity with simulating technologies
o Internal team documentation for basic demo 3 Con sonl i ol
progressions BE Continue with Microsoft

o Team requirement to complete basic demos
e Minimal documentation for Xilinx implementations
o Reaching out to experts in development community Ciitleing ~ Hammera e
o Reverse engineering implementation source
o Evaluating responses from compliant
implementations

@& Continue with Apple

Privacy Policy « User Notice

A ATLASSIAN

One account for Confluence, Jira, Trello and more.

Future Milestones

e Further document internal tooling and
technologies used
e Develop external Python/C++ tool for

external data sourcing
o Document multiple use cases
o Document implementation for future
development

e Implement additional
sensors/protocols in SystemC device
server

e IMU graphical interface
demonstration

Thank You For Listening!

Questions?

Current Project Status

Completed:

e Outreach to open-source community was successful

e Initial Documentation for a co-simulation demo in a pull request to main
repository

e Application involving LibRemotePort configuration is working (?)

Our work may be given to interns at Collin's Aerospace to use/work on over the
summer.

Prototype Implementations

e Implemented basic remote port application

o Still reverse engineering protocol

o Documentation and consistent operation still in progress
e PPM demo working as intended

o Documentation needed

o Cleanup and publication needed
e Documentation

o Basic walkthrough 3rd revision completed

o Needs to be pushed for additional feedback

e IMU Driver

o Still being compiled into the Buildroot kernel

Problem Statement

The existing co-simulation environment provided by Xilinx, which utilizes a
SystemC TLM and QEMU, lacks sufficient documentation for a newer user to
learn and use it. It also has opportunities for an expanded interface to allow
more robust testing

Task Contributions of Each Member (Each person
fill out)

Matt: Open-Source Community contact, demo documentation,
remote-port/communication protocol architecture, administrative documentation

Braedon: PPM SystemC state machine / demo, IMU kernel module compilation,
Threading demo build, version control configuration

Cody: Initial demo set-up, documentation for original demo, technology research,
IMU research/set-up

Spencer: Website updating, IMU research

