
Co-Simulation of an 
Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince 
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin’s Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/


Background: QEMU

● Processor emulator that allows 
execution of programs for 
specified board/processor

● Allows us to simulate a and ARM 
Cortex A9 for a Zynq-7000 FPGA 
SoC platform

● Can run embedded Linux or bare 
metal programs
○ We are using Buildroot to compile and 

assemble an Embedded Linux Boot 
Image and File System



Background: SystemC-TLM

● Hardware modeling language that uses plain 
C/C++ syntax to model hardware systems

● Allows complete simulation of Memory Mapped 
hardware, AXI systems, and more

● Libsystemctlm-soc: Xilinx SystemC library that 
provides an interface between a SystemC 
modeling environment and a Zynq-7000, Zynq 
Ultrascale+, and Versal ACAP computation 
platforms



Hardware/Software Co-Simulation

● Simulate the processor your code is running on (Embedded ARM Cortex-A9)
○ Processor emulator (QEMU)
○ Buildroot Linux

● Simulate the hardware interactions and mock all calls made
○ Hardware implementation (SystemC)
○ Hardware transaction modeling (TLM)

● Connect the two simulated environments (FPGA PS-PL connection)
○ Xilinx Remote Port



Problem Statement

● Steep learning curve for beginners
○ Few documented example projects
○ Lacking basic documentation

● Desire for additional flexibility
○ Once the simulation has been setup, 

difficult to manipulate data “Generated” by 
simulated hardware

○ Desire to “feed” data into the system from 
an external source

○ Processing System (QEMU) being none the 
wiser, assumes it is a real device



Intended Users

● Corporations who simultaneously 
develop hardware/software solutions
○ Aerospace, Defense, Industrial 

Automation, Automotive
● Users looking to extensively test 

hardware and software independently 
of one another

● People interested in applying 
Co-Simulation to their own project 
who are stymied by the barrier of 
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png


Use Case Example

● You are a software engineer developing a 
hardware driver to control a new 
temperature sensor
○ Interfacing with it over an I2C interface
○ You have the technical documentation
○ You have v0.1 of the driver written
○ Now What?

● How can you test your driver code in a 
simulated environment before a 
engineering sample of the sensor has 
been produced?

IMAGE



Functional Requirements/Deliverables

● Documentation
○ Document an initial environment setup 

walkthrough
○ Create an additional demo to for a more 

complex system
● External Data Source/Modeling Tool

○ Model an I2C Bus in SystemC and 
corresponding test application

○ Drive a simulated IMU device over I2C with 
static data

○ Develop Remote port custom 
communication tunnel for external data 
source tool

○ Demonstrate an off-the-shelf Linux IMU 
driver running on QEMU, working with 
modeled hardware

PR has been submitted, being revised

PPM demo working, publishing soon

Initial research completed

Test application with decoded packets working

Initial research completed

IMU and driver selected, test application in 
development



Non-Functional Requirements

● Author supplemental documentation for Xilinx 
technologies utilized

● Contribute all to centralized (Xilinx 
Confluence or otherwise) documentation 
body

● Documentation describing in full our 
I2C/Remote Port implementation resources 
utilized

● Implement additional examples with other 
protocols in our custom SystemC device 
server

● Support multiple device simulation 
simultaneously in the SystemC device server



Hardware/Software/Technology Platforms used

QEMU: Machine emulator. In this project, simulates a Zynq-7000 processor.

SystemC: C++ classes used for event driven simulation, used in tandem with QEMU to provide 
co-simulation.

LibRemotePort: Socket-work in C++ that allows systems to connect over Unit sockets, used for 
Host system → SystemC communication

Server: Ubuntu 18.0.4 Server

Project Management: Github - Version Control, Trello - Task management, and Discord - 
Collaboration



Co-Sim System Clock Demo



PPM State Machine Demo



Detailed Design - Documentation

● Generate Documentation that 
describes how to setup and build 
existing Demos

● Explain how to modify existing 
Demos to extend the 
hardware/software capability

● In depth documentation on new 
functionality that describes use 
cases, setup, and modification

● Receive feedback from development 
community and iterate



Documentation Status

● We have reached out to Xilinx Co-Sim 
Repository Maintainers and have 
established communication

● Submitted Pull Request for a running a 
“getting started demo”

● Have been iterating over the pull 
request to complete suggestions made 
my maintainers

● Contributes towards our fulfillment of 
improved end-user documentation 
deliverable



Detailed Design - I2C IMU Implementation

● Write a state machine in SystemC to model an I2C bus
● Identify a real IMU with a Linux driver that we will use as 

our test device
● Model backend value registers of IMU using SystemC + 

remote interconnect to host to allow host to control 
IMU data values

● Demonstrate and document a working mixed 
simulation consisting of
○ QEMU, running Buildroot Embedded Linux with IMU Kernel 

Module and front end test application
○ SystemC modeling an I2C bus with one or more devices attached
○ Host system modifying SystemC parameters on the fly to vary 

IMU data



I2C IMU Implementation Status: SystemC

● Built and tested state machined consisting of a Pulse Position Modulation 
encoder / decoder

● Executed a bare metal driver & runner program developed independently as 
a course project, demonstrating Mixed Simulation functioning with no 
software changes needed

● Remote Port Protocol Identification and Research
○ Identified Xilinx SystemC SoC Remote Port library as a candidate for SystemC to Host 

communications
○ Have established a one directional handshake between SystemC and host program, verifying 

read/write connectivity between the two



Test Plan

● Documentation will be tested by ensuring it conforms to all standards set 
forth by repository maintainers

● Documentation will also be tested by Collins Intern teams that attempt to 
follow our demos and work on tangential projects

● All commits will pass code review by repository maintainers, ensuring that 
we meet the standards outlined by each repository



Test Plan

● Each module will be unit tested to the fullest extent possible
● Integration testing will be conducted in stages with known working system 

states
● Each of the modules, along with the full demonstration of our working 

system, will be documented to ensure quality of testing.



Constraints & Considerations

● Open-source community sentiment to our proposed 
additions
○ Welcoming and positive from our numerous 

interactions
○ Generous suggestions and critiques

● Unfamiliarity with simulating technologies
○ Internal team documentation for basic demo 

progressions
○ Team requirement to complete basic demos

● Minimal documentation for Xilinx implementations
○ Reaching out to experts in development community
○ Reverse engineering implementation source
○ Evaluating responses from compliant 

implementations



Future Milestones

● Further document internal tooling and 
technologies used

● Develop external Python/C++ tool for 
external data sourcing
○ Document multiple use cases
○ Document implementation for future 

development
● Implement additional 

sensors/protocols in SystemC device 
server

● IMU graphical interface 
demonstration



Thank You For Listening!

Questions?



Current Project Status

Completed:

● Outreach to open-source community was successful
● Initial Documentation for a co-simulation demo in a pull request to main 

repository
● Application involving LibRemotePort configuration is working (?)

Our work may be given to interns at Collin’s Aerospace to use/work on over the 
summer.



Prototype Implementations

● Implemented basic remote port application
○ Still reverse engineering protocol
○ Documentation and consistent operation still in progress

● PPM demo working as intended
○ Documentation needed
○ Cleanup and publication needed

● Documentation
○ Basic walkthrough 3rd revision completed
○ Needs to be pushed for additional feedback

● IMU Driver
○ Still being compiled into the Buildroot kernel



Problem Statement

The existing co-simulation environment provided by Xilinx, which utilizes a 
SystemC TLM and QEMU, lacks sufficient documentation for a newer user to 
learn and use it. It also has opportunities for an expanded interface to allow 
more robust testing



Task Contributions of Each Member (Each person 
fill out)

Matt: Open-Source Community contact, demo documentation, 
remote-port/communication protocol architecture, administrative documentation

Braedon: PPM SystemC state machine / demo, IMU kernel module compilation, 
Threading demo build, version control configuration

Cody: Initial demo set-up, documentation for original demo, technology research, 
IMU research/set-up

Spencer: Website updating, IMU research


