
Co-Simulation of an 
Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince 
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin’s Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/


QEMU: Machine emulator. In this project, simulates a Zynq-7000 processor.

SystemC: C++ classes used for event driven simulation, used in tandem with QEMU to provide co-simulation.

LibRemotePort: Socket-work in C++ that allows systems to connect over Unit sockets, used for Host system → 
SystemC communication

Linux: Linux IIO subsystem, Linux Kernel Modules, Linux IO remapping

Server: Ubuntu 18.0.4 Server

Project Management: Github - Version Control, Trello - Task management, and Discord - Collaboration

Industrial I/O: Linux kernel drivers and library to interface with SPI and I2C analog sensors devices.

Hardware/Software/Technology Platforms used



Hardware/Software Co-Simulation

● Simulate the processor your code is running 
on (Embedded ARM Cortex-A9)
○ Processor emulator (QEMU)
○ Buildroot Linux

● Simulate the hardware interactions and mock 
all calls made
○ Hardware implementation (SystemC)
○ Hardware transaction modeling (TLM)

● Connect the two simulated environments 
(FPGA PS-PL connection)
○ Xilinx Remote Port



Problem Statement

● Steep learning curve for beginners
○ Few documented example projects
○ Lacking basic documentation

● Desire for additional flexibility
○ Once the simulation has been setup, 

difficult to manipulate data “Generated” by 
simulated hardware

○ Desire to “feed” data into the system from 
an external source

○ Processing System (QEMU) being none the 
wiser, assumes it is a real device



Intended Users

● Corporations who simultaneously 
develop hardware/software solutions
○ Aerospace, Defense, Industrial 

Automation, Automotive
● Users looking to extensively test 

hardware and software independently 
of one another

● People interested in applying 
Co-Simulation to their own project 
who are stymied by the barrier of 
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png


Use Case Example

● You are a software engineer developing a 
hardware driver to control a new 
temperature sensor
○ Interfacing with it over an I2C interface
○ You have the technical documentation
○ You have v0.1 of the driver written
○ Now What?

● How can you test your driver code in a 
simulated environment before a 
engineering sample of the sensor has 
been produced?

IMAGE



● Documentation
○ Document an initial environment setup and demo 

walkthrough (Zynq 7000 Getting Started)
○ Create a complex system demo (PPM Demo)
○ Describe a TLM communication protocol 

(Remote Port)
○ Contribute documentation and demos to the 

open source community
● External Data Source/Modeling Tools

○ IIO device created in software, configured to 
mock an accelerometer

○ Drive a simulated IIO device via a SystemC model 
with static data

○ Develop Remote port custom communication 
tunnel for external data source tool

Functional Requirements/Deliverables



Non-Functional Requirements

● Author supplemental documentation for Xilinx 
technologies utilized

● Contribute all to centralized (Xilinx 
Confluence or otherwise) documentation 
body

● Documentation describing in full our 
I2C/Remote Port implementation resources 
utilized

● Implement additional examples with other 
protocols in our custom SystemC device 
server

● Support multiple device simulation 
simultaneously in the SystemC device server



Detailed Design - Documentation

● Generate Documentation that 
describes how to setup and build 
existing Demos

● Explain how to modify existing 
Demos to extend the 
hardware/software capability

● In depth documentation on new 
functionality that describes use 
cases, setup, and modification

● Receive feedback from development 
community and iterate



Co-Sim System Clock Demo



PPM State Machine Demo



Detailed Design - Novel Linux Device 
Implementation

● Write a state machine in SystemC to model bus 
transactions

● Pipe the SystemC memory mapped registers into the 
IIO subsystem

● Model backend value registers of IMU using SystemC + 
remote interconnect to host to allow host to control 
IMU data values

● Demonstrate and document a working mixed 
simulation consisting of
○ QEMU, running Buildroot Embedded Linux with IMU Kernel 

Module and front end test application
○ SystemC modeling an I2C bus with one or more devices attached
○ Host system modifying SystemC parameters on the fly to vary 

IMU data



IIO Demo

● Full out of tree buildroot setup
● 2 static channels, one random 

channel, 1 sine wave channel
● IIO driver has been configured 

to read from IO memory
● End-to-end demonstration of 

cosim->driver->back to host 
interaction

https://docs.google.com/file/d/1TbxZWW4uAQj-hf4F3xqPDB70Q1CZk73F/preview


IIO



Build process

● The entire demo can be built using 1 git repo containing a recursive 34 
submodules

● 2 simple make commands handle dependency installing and demo building
● Everything out-of-tree to facilitate easy extensibility
● Buildroot handles all kernel modifications via patch files that can be 

extended and recreated
● Demo execution is handled via script to facilitate TMUX usage



Remote-Port

● Environment Setup
a. QEMU and Host application create sockets
b. SystemC connects to both sockets
c. SystemC sends Hello
d. Devices send hello
e. Devices continue boot and initialization 

processes
f. Ready to interact

● Types of packets
a. Read data
b. Write data
c. Sync
d. Hello



Remote-Port Demo

● QEMU instance running 
Buildroot linux with Zynq-7000 
device tree

● Host application creates Unix 
socket for SystemC

● SystemC connects to both 
systems and maintains 
writable memory space

● Read and write from either 
device



Testing

● Individual model/demo (Remote-Port and IIO)
○ Manual verification using raw memory accesses (devmem)
○ Automated tests with custom simulation testing applications

● Demo Documentation
○ Clean code examples
○ Rich documentation of setup and running demos
○ All documentation reviewed by team, client, and open-source community
○ Committed documentation tested and reviewed by protocol authors

● Process
○ Tests conducted in controlled Co-Simulation environments
○ All done in latest SystemC release
○ Started with basic static value returns to frontend from backend SystemC
○ Working system “bootstrapped” to DUT frontend/backend



Constraints & Considerations

● Open-source community sentiment to our proposed 
additions
○ Welcoming and positive from our numerous 

interactions
○ Generous suggestions and critiques

● Unfamiliarity with simulating technologies
○ Internal team documentation for basic demo 

progressions
○ Team requirement to complete basic demos

● Minimal documentation for Xilinx implementations
○ Reaching out to experts in development community
○ Reverse engineering implementation source
○ Evaluating responses from compliant 

implementations



Community Impact

● Documentation put to 
work quickly!

● Proved just how important 
effective documentation is

● We were able to identify 
shortcoming in our 
existing documentation 
and fill those gaps

● Within 2 weeks of 
publication



Thank You For Listening!

Questions?



Background: QEMU

● Processor emulator that allows 
execution of programs for 
specified board/processor

● Allows us to simulate a and ARM 
Cortex A9 for a Zynq-7000 FPGA 
SoC platform

● Can run embedded Linux or bare 
metal programs
○ We are using Buildroot to compile and 

assemble an Embedded Linux Boot 
Image and File System



Background: SystemC-TLM

● Hardware modeling language that uses plain 
C/C++ syntax to model hardware systems

● Allows complete simulation of Memory Mapped 
hardware, AXI systems, and more

● Libsystemctlm-soc: Xilinx SystemC library that 
provides an interface between a SystemC 
modeling environment and a Zynq-7000, Zynq 
Ultrascale+, and Versal ACAP computation 
platforms



Prototype Implementations

● Implemented basic remote port application
○ Still reverse engineering protocol
○ Documentation and consistent operation still in progress

● PPM demo working as intended
○ Documentation needed
○ Cleanup and publication needed

● Documentation
○ Basic walkthrough 3rd revision completed
○ Needs to be pushed for additional feedback

● IMU Driver
○ Still being compiled into the Buildroot kernel



Problem Statement

The existing co-simulation environment provided by Xilinx, which utilizes a 
SystemC TLM and QEMU, lacks sufficient documentation and extendable demos 
for a new user to quickly learn and apply its concepts.



Task Contributions of Each Member

Matt: Open-Source Community contact, demo documentation, 
remote-port/communication protocol architecture, administrative documentation

Braedon: PPM SystemC state machine / demo, IMU kernel module compilation, 
Threading demo build, version control configuration

Cody: Also made contact with open-source community, initial demo set-up, 
documentation for original demo, technology research, IMU research/set-up, 
note-taker

Spencer: Website updating, IMU research


