Co-Simulation of an
Avionics Device

SDDEC21-02: Matt Dwyer, Braedon Giblin, Cody Tomkins, Spencer Davis, & Prince
Tshombe

Faculty Advisor: Dr. Phillip Jones
Client: Matthew Weber (Collin's Aerospace)
Website: https://sddec21-02.sd.ece.iastate.edu/

https://sddec21-02.sd.ece.iastate.edu/

Hardware/Software/Technology Platforms used

QEMU: Machine emulator. In this project, simulates a Zyng-7000 processor.
SystemC: C++ classes used for event driven simulation, used in tandem with QEMU to provide co-simulation.

LibRemotePort: Socket-work in C++ that allows systems to connect over Unit sockets, used for Host system —
SystemC communication

Linux: Linux 11O subsystem, Linux Kernel Modules, Linux |10 remapping
Server: Ubuntu 18.0.4 Server
Project Management: Github - Version Control, Trello - Task management, and Discord - Collaboration

Industrial I/0: Linux kernel drivers and library to interface with SPI and 12C analog sensors devices.

Hardware/Software Co-Simulation

e Simulate the processor your code is running

on (Embedded ARM Cortex-A9)

o Processor emulator (QEMU)
o Buildroot Linux

e Simulate the hardware interactions and mock

all calls made
o Hardware implementation (SystemC)
o Hardware transaction modeling (TLM)
e Connect the two simulated environments
(FPGA PS-PL connection)
o Xilinx Remote Port

AXI

[T
LibSystemCTLM-SoC M_AXI
B Your IP

System
D Memory
S_AXI

Xilinx QEMU Mixed Simulation Environment

Remote «Remote PortIPC | o Remote
Protocol Protocol

Remote Port IPC

Custom Simulation
Controller & Data
Generation

Application

Host OS (x86 Ubuntu)

Problem Statement

e Steep learning curve for beginners

O

O

Few documented example projects
Lacking basic documentation

e Desire for additional flexibility

O

Once the simulation has been setup,
difficult to manipulate data “Generated” by
simulated hardware

Desire to “feed” data into the system from
an external source

Processing System (QEMU) being none the
wiser, assumes it is a real device

When running you will need to make sure the program can link to your

SystemC/TLM libraries. You will also need to give arguments to the application.

The first argument points to the QEMU machine-path to use. The second argument

is the icount value to use. The arguments should line up with the QEMU command

line arguments.

A Versal example:

In one terminal, in the demo directory

LD_LIBRARY_PATH=/usr/local/systemc-2.3.2/1ib-1inux64/
unix:/tmp/qgemu/qemu-rport-_amba@e_cosim@® 10000

A ZyngMP example:

In one terminal, in the demo directory

LD_LIBRARY_PATH=/usr/local/systemc-2.3.2/1ib-1inux64/
unix:./qemu-tmp/gemu-rport-_amba@e_cosim@® 10000

A Zyngq-7000 example:
LD_LIBRARY_PATH=/usr/local/systemc-2.3.2/1ib-1inux64/
unix:./qemu-tmp/qemu-rport-_cosim@e 1000000

./versal_demo \

./zyngmp_demo \

./zynq_demo \

Intended Users i Gollins
Aerospace

e Corporations who simultaneously

develop hardware/software solutions
o Aerospace, Defense, Industrial
Automation, Automotive

e Users looking to extensively test
hardware and software independently
of one another

e People interested in applying
Co-Simulation to their own project
who are stymied by the barrier of
entry

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://upload.wikimedia.org/wikipedia/commons/6/6e/John_Deere_Logo.png

Use Case Example

e You are a software engineer developing a
hardware driver to control a new

temperature sensor
o Interfacing with it over an I?C interface
o You have the technical documentation
o You have v0.1 of the driver written
o Now What?

e How can you test your driver code in a
simulated environment before a
engineering sample of the sensor has
been produced?

Functional Requirements/Deliverables

e Documentation
o Document an initial environment setup and demo
walkthrough (Zyng 7000 Getting Started)
Create a complex system demo (PPM Demo)
O Describe a TLM communication protocol
(Remote Port)
O Contribute documentation and demos to the
open source community
e External Data Source/Modeling Tools
o 110 device created in software, configured to
mock an accelerometer
o Drive a simulated II0O device via a SystemC model
with static data
o Develop Remote port custom communication
tunnel for external data source tool

Protocal

The Remote-Port protocal is a protocal developed by Xilinx to communicate using Transactional Level Modeling (TLM)
between two hardware devices for simulation and emulaiton. As such, it takes into account syncing of simulaiton
steps, the capabilites of the other device, and allows for any number or hosts and devices to be attached togeather.

The data itself can be transmitted over Unix sockets, TCP, or TCPD socket protocals, but for our purposes we use
strictly unix sockets when communicating with our SystemC implementation.

Packets

The remote-port packet sturcture contains some common structures listed below:

o Header Struct [rp_pkt_hdr]: This is a generic packet header that is included and used in every every packet. It
contains basic info about the packet being sent (used for decoding), the length of the entire packet, the packet
ID, and thr originating device.

// Header of all packets sent over the remote-port
struct rp_pkt_hdr {
uint32_t cmd; // Command/type of packet being sent

t including this head

uint32_t len; // Total Leng
uint32_t id; // The packet id, I belive unique but just used for book keeping
not functionality
uint32_t flags; // ???
uint32_t dev; // The originating device
} PACKED;

Author supplemental documentation for Xilinx

technologies utilized

Contribute all to centralized (Xilinx
Confluence or otherwise) documentation
body

Documentation describing in full our
|2C/Remote Port implementation resources
utilized

Implement additional examples with other
protocols in our custom SystemC device
server

Support multiple device simulation
simultaneously in the SystemC device server

Non-Functional Requirements

How to set up and run the Co-Simulation Demo

This demonstration shows how to compile and run the Co-Simulation demo of Buildroot in QEMU with a simulated device in SystemC. This
configuration is tested working for Ubuntu 18.0.4 and assumes that a 'cosim directory is created in your home directory. This walkthrough also
assumes that the device being emulated by QEMU is the Xilinx Zyng-7000 SoC. This SoC seemed like a good candidate but the concept can
apply to any QEMU machine which plugs in a compatible remoteport bus interface.

Dependencies
Below are the dependencies needed to compile all the libraries in this demo:

sudo apt update
sudo apt install cmake gmake gcc gemu-kvm gemu-system gemu-user-static verilator

Setup and Compilation
Run these commands to clone and build the necessary repos (~/cosim assumed as the base directory).
Create the base directory

mkdir ~/cosim

SystemC Setup

cd ~/cosim

SYSC_VERSION=systemc-2.3.2

wget https://www.accellera.org/images/downloads/standards/systemc/systemc-2.3.2.tar.gz
tar xf ${SYSC_VERSION}.tar.gz && cd ${SYSC_VERSION}/

Detailed Design - Documentation

e Generate Documentation that
describes how to setup and build
existing Demos

e Explain how to modify existing
Demos to extend the
hardware/software capability

e In depth documentation on new
functionality that describes use
cases, setup, and modification

e Receive feedback from development
community and iterate

docs/getti

® -

&

rc-matthew-I-weber reviewed

ng-started-guide.md

+ ./configure --target-list="arm-softmmu,aarch64-softmnu,microblazeel-softmmu” --enable-fdt --disable-
kvm --disable-xen
+ make

-matthew-I-weber

- make

+ make ~3$((*nproc’+1))

Mluckydwyer Author

This is a good suggestion for ensuring people who copy and paste the commands can take advantage of faster
compilation but overall it adds complexity to a demo that is trying to lay everything out in simple terms. Do you think
it provides enough benefit to outweigh the complexity it adds?

Co-Sim System Clock Demo

bgiblin@sddec21-02:~/cosim/systemctlm-cosim-demo$ LD_LIBRARY_PATH=~/cosi
m/systemc-2.3.2/src/.1ibs/ ./zynq_demo unix:${HOME}/cosim/buildroot/hand
les/qemu-rport-_cosim@e 1000000

SystemC 2.3.2-Accellera --- Mar 11 2021 21:24:50
Copyright (c) 1996-2017 by all Contributors,
ALL RIGHTS RESERVED
open socket
connect to /home/bgiblin/cosim/buildroot/handles/qgemu-rport-_cosim@e

Info: (I702) default timescale unit used for tracing: 1 ps (trace.vcd)

PPM State Machine Demo

M Recefver

-en=4

Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel

O mmn ~ 1

PV A WNEOUVAEWNREDD

8x80080085DC
0x060000320
Ox000003ES
Ox000004E2
0x060606007D0
0x080606006D6
8x8008005DC
0x060000320
Ox000003ES
Ox000004E2
0x060606007D0
0x080606006D6

N..NANNANQANCNC

Info:

Info:

Info:

Info:

T Lm .

PPM_IN:

PPM_IN:

PPM_IN:

PPM_IN:

MDAt TAI.

Reading

Reading

Reading

Reading

Dnm Al e~

Count

Count

Count

Count

La AN

Detailed Design - Novel Linux Device
Implementation

e Write a state machine in SystemC to model bus
transactions

e Pipe the SystemC memory mapped registers into the
110 subsystem

e Model backend value registers of IMU using SystemC +
remote interconnect to host to allow host to control
IMU data values

e Demonstrate and document a working mixed

simulation consisting of
o QEMU, running Buildroot Embedded Linux with IMU Kernel
Module and front end test application
o SystemC modeling an I2C bus with one or more devices attached

o Host system modifying SystemC parameters on the fly to vary
IMU data

https://docs.google.com/file/d/1TbxZWW4uAQj-hf4F3xqPDB70Q1CZk73F/preview

“Read Request” 110 Kernel Driver <

Buffered Reader Memory Access Libremote-port Socket SystemC Model Data READ!

Build process

e The entire demo can be built using 1 git repo containing a recursive 34
submodules

e 2 simple make commands handle dependency installing and demo building

e Everything out-of-tree to facilitate easy extensibility

e Buildroot handles all kernel modifications via patch files that can be
extended and recreated

e Demo execution is handled via script to facilitate TMUX usage

Remote-Port

| | |
0 Host QEMU SystemC
e Environment Setup - . | 7 | pen
. . Start system | B i

a. QEMU and Host application create sockets |Eosgsie Rl ECI R T R TN
b. SystemC connects to both sockets Note: "hello” packet | | "helo” packet
C. SystemC Sends He”O handshake occurs twice. || "hello” packet
d. Devices send hello || ‘read” packet

. . 0 om0 0 . read response + data

e. Devices continue boot and initialization Wiite” packel = Gala
processes ‘ write response

f. Ready to interact

° Types of packets
Read data

Write data

Sync

Hello

o0 oo

Remote-Port Demo

e QEMU instance running
Buildroot linux with Zyng-7000
device tree

e Host application creates Unix
socket for SystemC

e SystemC connects to both
systems and maintains
writable memory space

e Read and write from either
device

Getting Started Documentation

19 Open

Testing

L3 Conversation ' 59

e Individual model/demo (Remote-Port and 110)
o Manual verification using raw memory accesses (devmem)
o Automated tests with custom simulation testing applications

e Demo Documentation
o Clean code examples
o Rich documentation of setup and running demos
o All documentation reviewed by team, client, and open-source community
o Committed documentation tested and reviewed by protocol authors

e Process
o Tests conducted in controlled Co-Simulation environments
o All done in latest SystemC release
o Started with basic static value returns to frontend from backend SystemC
o Working system “bootstrapped” to DUT frontend/backend

Constraints & Considerations

= Confluence

e Open-source community sentiment to our proposed
Log in to continue to:

additions Co-simulation
o Welcoming and positive from our numerous
interactions

|Enter email

o Generous suggestions and critiques Continue
e Unfamiliarity with simulating technologies
o Internal team documentation for basic demo 3 Con sonl i ol
progressions BE Continue with Microsoft

o Team requirement to complete basic demos
e Minimal documentation for Xilinx implementations
o Reaching out to experts in development community Ciitleing ~ Hammera e
o Reverse engineering implementation source
o Evaluating responses from compliant
implementations

@& Continue with Apple

Privacy Policy « User Notice

A ATLASSIAN

One account for Confluence, Jira, Trello and more.

Community Impact

e Documentation put to
work quickly!

e Proved just how important
effective documentation is

e We were able to identify

shortcoming in our
existing documentation
and fill those gaps

e Within 2 weeks of
publication

Dear Matthew Dwyer ,

Hope you are doing well. I badly need some help with co simulation and I am afraid that I have been trying for two
months without any success. I am doing my phd in University of Florida. Could you pls help me on this tutorial you
write on this ? https:/github.com/Xilinx/systemctlm-cosim-demo/blob/master/docs/zynq-7000-getting-started-
guide.md I have run the demo and was getting some value in shell using the devmem 0x40000000. I am not sure
about the result but the hex value was increasing. Can you pls help me to replace with my custom soc ? I copied the

image and necessary files in buildroot/output/images folder but my devmem of custom PL blocks was not working

.could you please help me ? I need to implement it so badly ?

Regards,

Graduate Student

Thank You For Listening!

Questions?

Background: QEMU

e Processor emulator that allows
execution of programs for
specified board/processor

e Allows us to simulate a and ARM
Cortex A9 for a Zyng-7000 FPGA
SoC platform

e Can run embedded Linux or bare

metal programs
o We are using Buildroot to compile and
assemble an Embedded Linux Boot
Image and File System

[test@donizetti ~]1$ gemu-arm ./ls --color /
bin 1ib64

lib sbin system-upgrade
[test@donizetti ~]$ uname -a
Linux donizetti 4.6.7-300.fc24.x86 64 #1 SMP Wed Aug 17 18:48:43 UTC 2016 x86 64
x86 64 x86 64 GNU/Linux
[test@donizetti ~1$ file ./1s
./ls: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked
, interpreter /lib/1ld-linux-armhf.so.3, for GNU/Linux 3.0.0, stripped
[test@donizetti ~1$ i

Background: SystemC-TLM K\
SYSTEMG

e Hardware modeling language that uses plain
C/C++ syntax to model hardware systems

e Allows complete simulation of Memory Mapped
hardware, AXI systems, and more

e Libsystemctim-soc: Xilinx SystemC library that
provides an interface between a SystemC ,
modeling environment and a Zynq-7000, Zynq
Ultrascale+, and Versal ACAP computation
platforms

Prototype Implementations

e Implemented basic remote port application

o Still reverse engineering protocol

o Documentation and consistent operation still in progress
e PPM demo working as intended

o Documentation needed

o Cleanup and publication needed
e Documentation

o Basic walkthrough 3rd revision completed

o Needs to be pushed for additional feedback

e IMU Driver

o Still being compiled into the Buildroot kernel

Problem Statement

The existing co-simulation environment provided by Xilinx, which utilizes a
SystemC TLM and QEMU, lacks sufficient documentation and extendable demos
for a new user to quickly learn and apply its concepts.

Task Contributions of Each Member

Matt: Open-Source Community contact, demo documentation,
remote-port/communication protocol architecture, administrative documentation

Braedon: PPM SystemC state machine / demo, IMU kernel module compilation,
Threading demo build, version control configuration

Cody: Also made contact with open-source community, initial demo set-up,
documentation for original demo, technology research, IMU research/set-up,
note-taker

Spencer: Website updating, IMU research

