

Team SDDEC21-02

Mathew Weber – Collins Aerospace

Dr. Phillip Jones

Spencer Davis

Matt Dwyer

Braedon Giblin

Cody Tomkins

Prince Tshombe

 sddec21-02@iastate.edu

https://sddec21-02.sd.ece.iastate.edu

Created: 03-07-2021 / V1

Revised: 04-05-2021 / V2

Revised: 04-23-2021 / V3
Revised: 04-25-2021 / Final

Co-Simulation of an Avionics
Interface Device

DESIGN DOCUMENT

Development Standards & Practices Used

In this project, we utilize many practices related to open-source software. Our

project hinges on us using open-source repositories, as well as expanding and

contributing to these such projects as well. Our team also utilized AGILE-like

development, where we utilized a KANBAN style task board to keep track of our

ongoing and defined tasks.

Summary of Requirements

● Setup and execute a Cosim model using SystemC TLM backend and Xilinx

QEMU processor simulator simultaneously

● Expand the Cosim capabilities by implementing bi-directional memory

communication

● Model and test an off the shelf Linux driver for a memory-mapped

peripheral

Applicable Courses from Iowa State University Curriculum

● CPR E 381

● CPR E 288

● CPR E 488

● CPR E 308

New Skills/Knowledge acquired that was not taught in courses

Our team acquired new knowledge of hardware simulation platforms, including

SystemC TLM and Xilinx QEMU. Our team also explored Linux driver testing

and gained insight into how the driver may interface with a memory-mapped

peripheral.

Executive Summary

Table of Contents

1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2 Project Plan 6

2.1 Task Decomposition 6

2.2 Risks And Risk Management/Mitigation 7

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 7

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 10

2.6 Personnel Effort Requirements 10

2.7 Other Resource Requirements 13

2.8 Financial Requirements 13

3 Design 14

3.1 Previous Work And Literature 14

3.2 Design Thinking 14

3.3 Proposed Design 15

3.4 Technology Considerations 15

3.5 Design Analysis 16

3.6 Development Process 16

3.7 Design Plan 16

4 Testing 17

4.1 Unit Testing 17

4.2 Interface Testing 17

4.3 Acceptance Testing 18

4.4 Results 18

5 Implementation 19

6 Closing Material 19

6.1 Conclusion 19

6.2 References 20

6.3 Appendices 20

1 Introduction

1.1 ACKNOWLEDGEMENT

We want to give our client Matthew Weber a big thanks for providing us with the technologies we
need and for his technical help and patience throughout this project. We would also like to thank
Dr. Phillip Jones for giving us technical advice and helping us solve problems we have had
throughout this project. This project couldn’t be done without them.

1.2 PROBLEM AND PROJECT STATEMENT

Problem: The Co-Simulation (Co-sim) environment using Xilinx Quick Emulator (QEMU) in

conjunction with Xilinx SystemC TLM libraries lacks good technical demonstrations and

documentation.

Solution: This project aims to create demos and simulations that can be documented and used as

examples for future users of this software. Our team’s primary demo will be building will feature an

arbitrary Linux driver running in QEMU simulation, with a SystemC backend capable of

communicating bidirectionally with the host PC. An application hosted on the host PC can then

interact with the SystemC backend, driving the backing registers of the Linux device. We will

complete this demo with a comparison between the co-simulation environment and a traditional

QEMU simulation, explaining where benefits can be seen with Co-sim instead of current

simulation strategies.

1.3 OPERATIONAL ENVIRONMENT

The project will be created in a Linux environment. We are using an Ubuntu 18.3.4 server. This
version of Linux was selected based on prior Co-sim demos, ensuring compatibility with all
required tools. Our project will be simulating hardware, so we do not need any special hardware for
this design.

Our primary concern with our environment is maintaining correct versioning on all submodules.
We can manage this by forking each repository and keeping our own “ground truth” versions that
we know will work. Tracking versions that will adequately work in our toolchain is also critical to
include in our documentation.

Co-sim is an open-source project, so we will be working with the project community to ask
questions and get feedback from the project creators. Working with an open-sourced codebase
means we must abide by their standards for coding design and documentation.

1.4 REQUIREMENTS

1. Identify an off-the-shelf Linux driver for an I2C IMU device

2. Bi-directional communication between the SystemC model and the host PC.

a. Communication must allow multiple devices to be modified by the front end

b. Must support read/writes to registers synchronized with QEMU accesses

c. The interface should be configurable and scalable

3. Front end application to manage the host PCs connection with SystemC backend

4. Documentation and demonstration of design, as well as a robust comparison between

Cosim and previous simulation interfaces

1.5 INTENDED USERS AND USES

Our intended users are corporations looking to utilize Co-simulation for testing their products. For

instance, the avionics community would be interested in these modeling chains as they can test

software drivers before having novel avionics hardware designed and synthesized.

1.6 ASSUMPTIONS AND LIMITATIONS

We are assuming that:

● All source code will be published to an open-source repository

● We can freely use all SystemC libraries to model our communication of interfaces

Some of our limitations are:

● Some group members have little experience using a Linux based operating system and

need to learn a lot of new material to be able to contribute

● The amount of current documentation of the system process is relatively limited.

● Our contributions and documentation will be constrained by what repository maintainers

are interested in having in their projects.

● As of right now, the co-simulation programs do not utilize a convenient user interface,

which may make testing our new code difficult.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

By the end of the first semester:

1. The group should have the foundation of a bi-directional SystemC interface implemented
to send and receive data from the SystemC model.

a. Prototyped implementation - (IN-PROGRESS: due May 7th, 2021).

b. Full implementation with command-line frontend interface - (PLANNED: due
September 2nd, 2021).

2. A Linux driver for an I2C IMU identified with a basic understanding of the expected
backend behavior documented - (COMPLETED: April 16th, 2021).

3. Have a line of communication with open-source repository maintainers for demos we are
working with - (COMPLETED: April 15th, 2021).

4. Documentation on initial Cosim demos generated and submitted to the puiblic Co-sim
repository as a pull request (IN-PROGRESS: due April 30th, 2021).

5. I2C IMU sensor functional demo
a. Proto-typed implementation - (PLANNED: due September 23rd, 2021).
b. Graphical representation of IMU data - (PLANNED: due October 7th, 2021).

2 Project Plan

2.1 TASK DECOMPOSITION

This project consists of multiple tasks. Below is a list of those overarching tasks and some of the

intricacies involved in each:

1. Initial Cosim demo and environment setup

a. Setup a shared computing environment for all members to use collaboratively.

b. Work through the initial demo provided by the client to learn the ropes of the

tools as hand

c. Explore the technologies (SystemC, QEMU, TLM) and how they interact with one

another in the simulated environment

2. Modifying the Demo

a. Understanding how to modify the demo to add additional functionality or alter

previous functionality of the timer register counter

b. Implement the Threading demo provided by our client to augment the initial Co-

Simulation demo further

c. Better understand how all the software interacts and plan on how to add new

demo features

d. Document the process for running the demo for addition to the repository through

pull-request submission

3. Reach out to public project maintainers about project direction

a. What additions would be welcomed by the development teams utilizing the same

tools?

b. What other resources are available to aid in the contribution process?

c. What areas are most in need of support and extension?

4. Implementing bi-directional communication of the host and the SystemC model

a. Develop a protocol for modifying any SystemC device data via communications

from the host

b. Understand interactions between simulated hardware in SystemC, the simulated

Linux software driver and OS in QEMU, and the input data from the host OS

c. Implement a front end interface to be run on the host

d. Demonstrate controllability of the simulation via the host communication

interface

5. Identify and obtain a driver for an I2C IMU and simulate the driver using Co-simulation

augmented by host-controlled communications.

a. Identify an open-source Linux driver for IMUs to use in a demo

b. Identify a common IMU for simulation

6. Document the additional demonstration in detail

a. Record all steps to reproduce results from a beginner to intermediate experience

level

b. Receive public feedback from the development community surrounding similar

demos and the utilized tools.

c. Publish a final draft that is accepted for publication

d. Provide easy handles for other developers to extend the functionality of the demo

and understand how to adapt it to their needs.

7. Repeat Process for similar ARINC 717 or UART in Linux Serial System

a. Follow a similar design pattern utilizing the tools from previous parts to

implement more complex standards and devices

b. Explore additional sensors and testing use cases not thoroughly documented to

build out additional testing capabilities

c. Work off of additional client-side teams working in parallel on similar projects

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

The overall risk for this project is relatively low. The risk is low because it is entirely in software

development and utilizing demos already freely provided online. The most significant risk factor

foreseen is the poor reception and feedback of our contributions to the public projects. This could

occur for several reasons, such as poor maintainer support, unaligned goals for the project’s future,

or already generated documentation and additions.

To mitigate this risk, we have worked with our client to develop another publication strategy if the

primary public repositories do not favor our contributions. This would involve publishing our

additional documentation and improvements on our own. Since each of the projects is open-

source, meaning free to distribute and alter, there would be no licensing issues. While it would not

be a part of the official documentation for the interacting projects, it would likely still contribute to

the Co-Simulation development community as a whole.

In addition, when developing the low-level test drivers for the UDP communication protocol and

other devices, our client has been generous in providing support from professionals in that area. As

such, we will likely struggle at first to generate those low-level drivers, but with the help of the

consultant provided, the majority of those risks should be mitigated.

Finally, documentation for the tools we are utilizing and developing are significantly scarcer than

other public tools are due to their limited use. As such, part of our project goals is to better the

documentation provided for developers wishing to utilize these tools for co-simulation. However,

we may run into roadblocks ourselves when trying to use some of these undocumented tools.

To mitigate the risk of unknown and undocumented tools, our team will be vigilant in

documenting all tools and knowledge we gain along the way for our team and others. We will

employ a fail-fast methodology of building prototypes and testing often. When we encounter poor

results, we will be prepared to search for alternative solutions rather than waste time on a

potentially poor solution. We also plan to be aggressive in outreach and support. We will seek

guidance from our client and his team of experts, along with the development community of the

tools at our disposal. With these resources, we foresee a quick turn-around time if we need to pivot

to a new tool.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Initial Cosim demo and environment setup

a. Have everyone on the team complete the demo application

2. Modifying the Demo

a. Make a pull request to the Cosim-Demo repo and get feedback

b. Have every member of the team understand and change the memory-mapped

register data to the Real-Time Clock (RTC)

c. Make contact with the Cosim-demo repository managers to gain feedback on the

additional features and documentation

d. Publish centralized startup documentation for the Cosim-demo repository

e. Create a list of milestones for implementing the threading framework described by

the client.

3. Implement working remote-port communication capabilities for bi-directional

communication between TLM and Linux environment

a. Determine a candidate device for bi-directional memory-mapped simulation from

a hardware and firmware side

b. Create a comprehensive document for adding new simulated devices from a

hardware (SystemC side) and software (Linux Buildroot in QEMU).

c. Develop a test application to aid in understanding both sides of the Linux socket

protocol and custom data packets in use

4. Public Contributions

a. Make 3+ documentation contributions to public Xilinx Co-Simulation repositories

b. Augment the initial demo application repo (Cosim-demo) to include additional bi-

directional remote-port capabilities

5. Collaborate with and build off the work of parallel teams work during the summer at

Collins

a. Consult with additional team progress achieved over the summer in the Co-

simulation documentation and domain

b. Understand real internal use cases and need to develop additional demos for

advanced communication protocols (ARINC 717, UART, Linux Serial System)

2.4 PROJECT TIMELINE/SCHEDULE

2.5 PROJECT TRACKING PROCEDURES

As our project progresses, we have chosen to use a Trello board to track our progress. This allows

us to break each task out and assign it to our team members to complete one at a time. It also

allows us to see a better bird’s eye view of our project to gauge our progress and current successes

and other bottlenecks that might be occurring. We are also utilizing Discord to communicate and

share documentation, links, and other comments. This allows us to work collaboratively in that

space and provide a single communication channel and resources for the project. We also utilize a

shared Gitlab group to house the repositories we need to submit changes to the relevant

repositories we plan to contribute to. These would also include our internal development code and

documentation that we generate in the process as well. These tools will make up the primary

sources of communication and collaboration for our development team during this project. A

shared Google Drive folder is used to maintain all administrative documents, diagrams, and

presentations among team members. Finally, when contributing to public code repositories hosted

on Github, Github pull requests. Our team uses their associated comment systems to solicit

feedback and suggestions from the open-source community.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Effort Estimate
(Team Combined

Hours)

Description Reason

Environment setup 20 This involves getting a
shared server setup,

meetings times
established, website

updated,
communication

mediums, and other
team dynamics. Along

with familiarization
with Linux and the
tools being used.

Getting a server
acquired and team

dynamics should be
trivial. Learning the
tools and getting the
basic demo up and

running for each team
member will take time
as these tools are new
to all team members.

Modifying The Demo 45 Making a change to
the demo to
demonstrate

understanding and as
a starting point to

extending the demo
with new

functionality.

Modifying the demo
should be a slightly

difficult undertaking.
Team members will
still be learning the
tools and exploring

bugs and other errors
that are encountered.
In addition, once the
demo is modified, it

needs to be then

replicated by all team
members to ensure
that all members
understand the

process and reasoning
behind changes to
contribute going

forward.

Remote-Port Protocol 60 Implement a bi-
directional remote-

port protocol so that
time-series data

devices can be played
back.

Communication/data
can be sent from both

the hardware and
software virtual

interfaces using the
TLM port of the

QEMU simulation.

This protocol will
allow for bidirectional

communication
between the

simulated hardware
and the software on

the Xilinx ARM
processor in QEMU.

Ensuring the standard
practices of

communicating in
TLM will be new for

this task, and
ensuring the

communication is
working

bidirectionally will
require significant

testing and
documentation.

Thread Protocol 20 Better comprehend
the threading

structure of SystemC
for future use in the

Co-Simulation server
planned.

This technology will
likely be used when

developing the device
communication server

implemented in
SystemC at the end of
the first semester. It is

essential to
understand this

feature and
framework initially
with the threading
demo for custom

implementation later
on.

Additional Sensor
Example

90 Implement an
additional sensor as

an example to further
bolster the offering of

the Cosim demo

This involves digging
into Linux driver

implementation and
datasheets for

memory-mapped

repository. This allows
a more accessible and

broader range of
opportunities for

others to learn the
development tools.

sensors. IT then also
involves

implementing said
sensor in SystemC and

the software side of
the driver in QEMU

and Buildroot for
simulation. As no

team members have
experience in these

skills, it will be a
significant learning

curve.

Public Cosim Demo
Documentation

30 Make multiple public
improvements to the
little documentation

provided for the
Cosim demo

repository and other
tooling utilized during

the project.

This involves
communicating with

members of the
community, which

can be slow at times.
It is also essential to

compose detailed
documentation to
help others solve

issues and learn the
tools. Documentation
should not be rushed,
although it should be
trivial if the tools are

known.

Colins Team
Collaboration

300+ hours We intend to meet
with additional

development teams at
Collin’s Aerospace to
understand different
use cases that would
benefit from the Co-

Simulation framework
being developed by

our team.

Over the summer,
additional

development teams at
Collins will likely

continue to develop
other features on our
public contributions.
As such, during the

Fall semester, we plan
to meet with those

teams to understand
their advances and

guide our future work
around developing
additional use cases

and protocols that aid
their internal needs. It
is unclear what exact
interfaces we will be
asked to implement,
although ARINC 717

and UART for the
Linux Serial System

have been mentioned
as likely goals.

2.7 OTHER RESOURCE REQUIREMENTS

For this project, a shared computing environment is needed for our team to develop the additions

to the software described effectively. Since we are simulating complex processors in parallel and

hardware devices attached to them, this requires a significant amount of computing resources. A

powerful Linux server is needed to support these computing needs for our project. This is currently

being provided by the Department of Electrical and Computer Engineering and guaranteed until

completing our project.

A team communication platform for weekly meetings is also required to communicate with one

another. We chose Discord as our preferred platform, as it is free and easy to use. This allows us to

work remotely, hold meetings, and share information in real-time with one another when we

cannot meet in person. Code repository and hosting services are again provided by the Department

of Electrical and Computer Engineering. At the same time, other documentation and demos remain

public or provided by our client and his team. Our project aims to utilize the current public

resources and guidance to produce additional documentation, tools, and resources for other

developers hoping to use the robust Co-Simulation framework provided by Xilinx with QEMU +

SystemC-TLM structure. All deliverables aim to be open-sourced and accessible for anyone to use,

and readily available to make sense in public development channels.

2.8 FINANCIAL REQUIREMENTS

This project will, in all, require no financial requirements. The shared computing resources have

been generously provided by the Department of Electrical and Computer Engineering, and all of

the software needed is free and open-source. Any professional consultants provided are done so

free of charge through the teams of the client’s company (Collin’s Aerospace). Any public

documentation, tools, feedback, or advice is done so free of charge due to the nature of the open-

source software community on the Github platform and the public nature of the Xilinx simulation

toolchain.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Various simulation technologies already exist for simulating both processor behavior and respective

simulation environments individually/separately. However, the Co-sim model combines the two.

Though this technology exists, there lacks sufficient documentation and demonstrations.

In essence, the Co-sim model as a toolchain is relatively new. Therefore, improving documentation

and demos will be a large focus of this project to make the technology more approachable to

prospective users.

The majority of project work will be focused on extending the usefulness of an already existing

simulation environment. This means that background research is somewhat limited in its scope to

learning about the technologies already being used by the system. The project group is currently

focused on learning about those technologies.

Background literature for this project includes SystemC tutorials, a Xilinx emulator user guide, co-

simulation documents, and any other work found on the open-source forums.

Literature:

Banerjee, Amal, and Balmiki Sur. “SystemC-AMS and SystemC Combinations.” SystemC and

SystemC-AMS in Practice, 2013, pp. 449–455., doi:10.1007/978-3-319-01147-9_17.

Ammari, Ahmed Chiheb, et al. “HW/SW Co-design for Dates Classification on Xilinx Zynq

SoC.” 2020 26th Conference of Open Innovations Association (FRUCT), 2020,

doi:10.23919/fruct48808.2020.9087548.

Xilinx. “Xilinx Quick Emulator User Guide.” 2019.

3.2 DESIGN THINKING

Co-sim technologies exist yet are not well known within the target community. A relatively new

tech, improving documentation and demos will make Cosimulation tech more approachable for

the community and hopefully allow for increased usage of these technologies among target

constituents.

Our initial design thought to improve Co-sim’s documentation and demonstration capabilities was

to create a set of highly general examples that would serve as demonstrations. However, we decided

we could better serve the community by implementing a more specific, feature-rich example.

With this in mind, we settled on implementing an I2C device that could be modified via both our

QEMU simulated driver and a separate Host controlled remote port stream. This example is

beneficial to the community because it represents a real-world use case where a Linux driver may

need to be tested against a complex simulated set of hardware.

Finally, we can address much of the requirements of the project by improving documentation.

Clear documentation is critical to a new user of the technology understanding how each of the

project parts works in tandem.

3.3 PROPOSED DESIGN

The primary goal of our project is to introduce the Co-simulation technology better and decrease

the learning threshold required for end-users to use the technology in their development workflow.

Our design begins with documentation. This satisfies the primary non-functional requirements of

our project in making a new user understand the value of Co-sim while providing insight on how to

initialize a Co-sim environment.

Our documentation will describe, in detail, each component of the simulation interface and how
that component interacts with the model as a whole. This crucial layer of visibility will allow
someone evaluating the technology insight into how their use case may fit into the model.

Our primary functional requirement of a novel demonstration application that an evaluator can
run and experiment with will be implemented via an IMU setup. We selected an IMU because it is a
complex subsystem device that may be commonly found in various applications, ranging from
automotive, aviation, mobile, and more. We will demonstrate how our simulation model can take
an off-the-shelf Linux driver, run it on our system via a host application while having the entire
model system be functionally indistinguishable from a real system with an IMU present despite the
entirety of the IMU being modeled.

Furthermore, our design will control the backing IMU via a frontend interface that runs on the
Host PC. The frontend interface will interact with the SystemC model via a remote port. The
Remote Port connection, defined in the Xilinx SoC libraries, will enable our frontend application to
directly interact with the SystemC model to modify state machine values, such as sensor readings,
on the fly.

Our design will allow an evaluator to quickly view a demonstration of a Linux driver operating
seamlessly with a modeled IMU, with the IMU accurately reflecting changing sensor values over
time as driven by a host application. This demo will provide a company insight into the value of a
robust simulated hardware model and how driver debugging can be done without hardware ever
having been developed.

3.4 TECHNOLOGY CONSIDERATIONS

Most technology decisions regarding this project have already been made due to the nature of the

proposal by our client. This is because the specific use case and environment have already been

described. Our primary goal is to document the toolchain better and develop additional channels

between the host and the SystemC model to aid the development Co-Simulation process using

existing infrastructure. One strength the co-simulation model offers is increased flexibility

compared to a “real world + simulation” model. This removed the need for access to physical

hardware devices since all hardware and software are simulated in the software technologies.

For this project, we are using QEMU for the ARM processor simulation. We are using device

description files for a Zynq 7000 System. However, we are not constrained by the particular board

we are targeting and intend for our work to be general enough so that anyone can replicate it

targeting a different board. We are modeling the Programmable Logic (PL) section of our FPGA

using SystemC. This design decision was made for us by previous Co-simulation work.

Ubuntu Linux was chosen as our host OS as all of our tools readily support it. Running our software

environment on a Ubuntu platform allows us to get support from ETG and easily share our team

members’ environment.

Finally, we chose Buildroot to generate our embedded Linux image run on our simulated processor.

We selected Buildroot because it is straightforward to get an image built and running, and it is

widely supported. Other possible options would have been Xilinx PetaLinux and Yocto; however, as

the Xilinx repository maintainers offered no objection to us not using Xilinx PetaLinux, we elected

to go with the simplest solution.

3.5 DESIGN ANALYSIS

We analyzed our design on two merits: how valuable our contributions to this technology will be
for future development teams interested in using Co-simulation and how successful our
implementation will be. At the moment, we are highly confident that our design will fulfill its
purpose of providing new support materials for evaluators. Our strategy has been evaluated and
approved by our client, who shares our optimism about our design.

Our current progress on our design has made our team confident that it is achievable in the
specified time frame. We have implemented the basis of a remote port into the SystemC model,
and we have begun work on integrating the IMU into our model. Combining each of these
components will be the topic of our next semester.

3.6 DEVELOPMENT PROCESS

Though this project doesn’t fit into any “specific” development process, it most closely resembles
the Agile approach because it is being completed through small, iterative progress chunks with
frequent feedback and demonstrations. Our group has chosen to use Trello to track progress.

This development process was selected because it allows for high client involvement and is readily
applicable to the system when other development processes would make less sense logically.

3.7 DESIGN PLAN

The project focus for this semester will mainly center around improving demos and documentation
to improve the approachability of Co-sim technology. Next semester, the project focus will shift to
adding increased functionality to the system by extending our interface and implementing front-
facing interaction methods.

 Host Machine
Ubuntu 18.x Server

Emulator
Xilinx QEMU

Buildroot
Embedded Linux

Target
Application

Hardware Model
SystemC TLM

IIC Bus BNO055 IMU

Via Remote Port

Remote Port Interface

Host Application

Figure 1: Design Diagram

Figure 1 above shows a high-level implementation of our design. The Host machine runs a QEMU
simulation of our ARM processor on the Xilinx Zynq-7000 SoC with a custom compiled version of
Buildroot. A Xilinx remote-port connects this instance to the SystemC TLM instance containing our
I2C bus to the BNO055 IMU emulated device run atop our SystemC server device. This
communicates by means of another Xilinx remote port to the host application used to control our
SystemC server from outside our simulated environment.

4 Testing

4.1 UNIT TESTING

We will test each demo component on its own to the fullest extent possible. The SystemC TLM
models for each demo can also be tested individually before attaching the appropriate Linux driver.
We can test our hardware implementations via the “devmem” command on Linux. As our project
mainly consists of implementing minor contributions to existing infrastructure, most of our work
will tightly interface with surrounding components and won’t be testable in isolation.

4.2 INTERFACE TESTING

The primary interface we have to worry about is the connection between QEMU and our SystemC
model. As the nature and specifics of this connection are outside of the scope of our project, we
don’t need to test it substantially. However, we need to ensure that our SystemC work is accurately
being translated into the QEMU environment using this connection. Once we build our UDP

interface, we will need to ensure that data is transferred correctly between the host OS and our
SystemC model. Specifically, we need to make sure read and write calls do what they intend to do
and that no data is lost when data transfer occurs.

4.3 ACCEPTANCE TESTING

As part of our acceptance protocols and tests, our primary metrics are feedback from the

development community about best practices and community contribution guidelines. As many of

the contributions we are making are of documentation in nature, this feedback is vital to ensuring

we are adhering to common standards and meeting the basic requirements of the projects to which

we contribute. Along with the community input, we go through multiple revisions to our work and

continually test each procedure we publish. This is done by a team member following the created

documentation step-by-step to replicate the results described and comparing any pain points or

needed improvements. Our project will also be contributed to by summer interns at Collins

Aerospace under our client in the summer of 2021. As such, they will primarily be using our

documentation and work as a starting point for understanding the technology infrastructure and

setting up basic development environments. Using our documentation, we will receive additional

results and feedback from actual beginner developers to refine the publications further.

We plan to continue gaining feedback from the development community and our client at every

step for final project acceptance. We have designed many demonstrations of our project examples,

including basic documentation and an initial demo, a proof of concept minimum viable product

(MVP) demonstration for our first semester review, a graphical inertial measurement unit (IMU)

demonstration with complete Linux kernel integration, and test application, and an ARINC 429

implementation demonstration utilizing our tools. We plan to create full functionality coverage

testing cases to demonstrate in the demonstration videos and supplementary documentation in

creating these demos. By doing all of this, we hope to cover the majority of use cases that a new or

experienced FPGA/embedded developer might encounter or desire to implement.

We also hope that other developers will find our initial offering of tools during the summer and

provide additional feedback. By having extra time for our repository to be discovered and

implemented, we are only increasing our feedback and improvement opportunities. We expect that

we will continue to receive positive feedback on the contributions we have published and plan on

publishing as we continue to progress. By maintaining close ties with the developers of these tools

and carefully applying their suggestions, we expect to continue to be welcomed in our additions to

the development tools of QEMU + SystemC-TLM co-simulation.

4.4 RESULTS

Our team currently has completed several facets of our project. We have obtained a Linux driver
for our IMU and have integrated it into our Linux system. We have verified via “lsmod” that our
driver is successfully loaded as a Kernel module. Currently, our team is evaluating our remote port
implementation. We have begun implementing a basic proof of concept that should provide us a
foundation to start testing control of SystemC state machines externally to SystemC.

We have evaluated our documentation by presenting it to our client as well as open-sourced
repository maintainers. The maintainers have provided us some advice on modifying our
documentation to fit with the repository expectations. We can validate our documentation by
receiving approval from repository maintainers to merge our work.

Our following tasks that still require implementation and testing are modeling an I2C Bus in
SystemC. This task will require the functionality of our remote port so that we can drive devices on
the bus. Once we have this bus implemented, we can begin testing the functionality of our
hardware model using the Linux Driver we loaded onto our QEMU system. We will test the I2C bus
by executing a sample driver program on our emulator. This program, and the accompanying
backend driver, are known as functional on real hardware. If these test programs properly execute
on our toolchain, we will know that the entirety of our implementation is functioning.

5 Implementation

Each section of our deliverables is neatly divided into demos. For instance, our client would like us

to demo a working out-of-the-box Linux driver running on our Co-sim platform. So, our team will

start our implementation with a focus on our Client Demos. Our team will lay out all of the

requirements for each demo and then implement them iteratively to add the needed functionality.

To begin implementing each demo, we will start by researching the existing material already in the

project. Our demos seek to build upon open-source repositories, and these projects already have

significant amounts of implementation and publicly available correspondence relating to potential

tasks.

Our team will utilize all of the available resources associated with each project to decide how the

feature will fit into the demo. Next, we will reach out to the maintainers to get feedback on our

proposed changes. Understanding how the repository maintainers want our changes to fit into the

existing demo is key to us properly implementing the change.

From this point, we can go ahead and make our changes. Much of our changes will be in the

SystemC demo code that is written to add additional functionality to the QEMU memory interface.

We can then test our differences on the demo using basic Linux memory access commands to

verify that we are adjusting memory as required.

Finally, these open-sourced projects require a high amount of documentation. We are seeking to

expand the documentation already present and generate new documentation so that these

repositories can be more accessible. So, our future implementation will need to involve growing the

quantity and quality of documentation for each demo and then publishing these documents

appropriately so that the community can use them.

6 Closing Material

6.1 CONCLUSION

So far, our team has demonstrated proficiency in executing a Co-sim demonstration. We have

begun learning more about the toolchain and will soon start experimenting with alternate SystemC

models driving our QEMU memory model. This will naturally progress us into our first significant

deliverable: demonstrating a working Linux Peripheral driver executing Co-sim.

Our next tasks include building our understanding of a SystemC remote port. We have set up a

model that utilizes the remote port already. However, we lack sufficient knowledge of the interface

to implement our design currently fully. Our team has also made significant headway on

documentation, and we plan on adding more and expounding on our current documentation as we

progress.

In the future, our team will continue to adopt an iterative approach in adding functionality to the

Cosim system. Our team will also be reaching out to open source projects and identifying areas to

expand the existing offering. This expansion will be done in the form of new demos,

documentation, or additional features.

6.2 REFERENCES

J. Komlodi and V. Garhwal, “Co-simulation,” Confluence. [Online]. Available: https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/862421112/Co-simulation. [Accessed: 09-Mar-2021].

Xilinx, “systemctlm-cosim-demo,” GitHub. [Online]. Available:
https://github.com/Xilinx/systemctlm-cosim-demo. [Accessed: 09-Mar-2021].

6.3 APPENDICES

Figure 2 - Xilinx QEMU Mixed Simulation Environment

Xilinx. “Xilinx Quick Emulator User Guide.” 2019, p. 37.

