

Development Standards & Practices Used
In this project, we utilize many practices related to open-source software. Our

project hinges on us utilizing open-source repositories, as well as expanding and

contributing to these such projects as well. Our team also utilized AGILE-like

development, where we utilized a KANBAN style task board to keep track of our

ongoing and defined tasks.

Summary of Requirements

● Setup and execute a Cosim model using SystemC TLM backend and Xilinx

QEMU processor simulator simultaneously

● Expand the Cosim capabilities by implementing bi-directional memory

communication

● Model and test an off the shelf Linux driver for a memory-mapped

peripheral

Applicable Courses from Iowa State University Curriculum

● CPR E 381

● CPR E 308

New Skills/Knowledge acquired that was not taught in courses
Our team acquired new knowledge of hardware simulation platforms including

SystemC TLM and Xilinx QEMU. Our team also explored Linux driver testing

and gained insight in how the driver may interface with a memory mapped

peripheral.

Table of Contents
1 Introduction 4

Acknowledgement 4

Problem and Project Statement 4

Operational Environment 4

Requirements 4

Intended Users and Uses 5

Assumptions and Limitations 5

Expected End Product and Deliverables 5

Project Plan 5

2.1 Task Decomposition 5

2.2 Risks And Risk Management/Mitigation 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 7

2.4 Project Timeline/Schedule 7

2.5 Project Tracking Procedures 7

2.6 Personnel Effort Requirements 8

2.7 Other Resource Requirements 8

2.8 Financial Requirements 8

3 Design 8

3.1 Previous Work And Literature 8

Design Thinking 9

Proposed Design 9

3.4 Technology Considerations 10

3.5 Design Analysis 10

Development Process 10

Design Plan 10

4 Testing 10

Unit Testing 11

Interface Testing 11

Acceptance Testing 11

Results 11

5 Implementation 11

6 Closing Material 12

6.1 Conclusion 12

6.2 References 12

6.3 Appendices 13

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to give a big thanks to our client Matthew Weber for providing us with the
technologies we need and for his technical help and patience throughout this project. We would
also like to thank Dr. Phillip Jones for giving us technical advice and helping us solve problems we
have had throughout this project. This project wouldn’t be as well done without them.

1.2 PROBLEM AND PROJECT STATEMENT

Problem: The co-simulation environment that exists using Xilinx QEMU (Quick Emulator) in
conjunction with Xilinx SystemC TLM libraries lacks good technical demonstrations and
documentation that will make using this software chain easier.

Solution: This project’s goal is to create demos and simulations that can be documented and used
as examples for future users of this software. The team will be working with open source projects to
understand their processes and suggest how to improve their documentation. In the end, the goal
is to get our work merged into the codebase for future users to use.

1.3 OPERATIONAL ENVIRONMENT

The project will be created in a Linux environment. We are using an Ubuntu 18.3.4 server, the same
server that this project has been built on already. This will allow us to avoid any bugs that could
occur from using an outdated version of Linux, while having everyone in the group work in the
same environment. This software simulates hardware, so there won’t be any special hardware
specifications that are necessary.

This is an open source project, so we will be working with the project community, where we can
ask questions and get feedback from the project creators. This means we must abide by their
standards for coding design and documentation.

1.4 REQUIREMENTS

1. Using the co-sim environment, extend the previous use case where the processor receives
data from the simulator, to also include a transmit from the processor to the simulator.

2. Build a UDP bridge to send and receive data from the SystemC model which is used to
support data flows in the memory map interface model.

3. Create well written documentation to aid future users of the co-sim technology.
4. Use coding standards that are created by code moderators in the repository.
5. Add additional sensors and protocols in the simulated firmware and software

o A temperature sensor and development of a linux driver
o ARINC 717 receiver and Linux test application
o Implementing UART and hooking it into Linux subsystem

6. All work shall adhere to the coding standards that are defined by the open source
community’s standards.

1.5 INTENDED USERS AND USES

Our intended users are corporations looking to utilize these toolflows for testing their products.
For instance, the avionics community would be interested in these modeling chains as they can test
software drivers prior to having novel avionics hardware designed and synthesized.

1.6 ASSUMPTIONS AND LIMITATIONS

We are assuming that:

● All source code will be published to an open source repository

● The UDP bridge will allow data to be transferred from QEMU to the SystemC server and
vice versa

● Proof of functionality will hinge on demonstrating an out of the box Linux peripheral
driver co-simulation

Some our limitations are:

● Some group members have little experience using a Linux based operating system and
need to learn a lot of new material to be able to contribute

● The amount of current documentation of the system process is fairly limited.
● Our group is fairly busy and our schedules do not allow us to meet together more than

three times a week.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

By the end of first semester:

1. The group should create a new demo for the co-simulation process that can show users
how to boot the simulation, and (do stuff). Make sure this demo is well documented so
base level users can still run the software.

2. Have ability to transmit data from processor to the simulated firmware (can already go
from simulated firmware to processor)

3. Have a line of communication with open-source repository maintainers for demos we are
working with

2 Project Plan

2.1 TASK DECOMPOSITION

This project consists of multiple tasks. Below is a list of those overarching tasks and some of the
intricacies involved in each:

1. Initial Cosim demo and environment setup
a. Setup a shared computing environment for all members to use collaboratively.

b. Work through the initial demo provided by the client to learn the ropes of the
tools as hand

c. Explore the technologies (SystemC, QEMU, TLM) and how they interact with
one-another in the simulated environment.

2. Modifying the Demo
a. Understanding how to modify the demo to add additional functionality or alter

previous functionality of the timer register counter.
b. Better understand how all the software interacts and plan on how to add new

demo features
c. Document the process for running the demo for addition to the repository through

pull-request submission
3. Reach out to public project maintainers about project direction

a. What additions would be welcomed by the development teams utilizing the same
tools?

b. What other resources are available to aid in the contribution process?
c. What areas are most in need of support and extension?

4. Implement working UDP communication capabilities for bi-directional communication
between TLM and Linux environment

a. Look for possible candidate devices to emulate with pre-included drivers
b. Do so for a memory mapped IO device with driver already included in Buildroot

kernel
c. Get feedback from client and public development community

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

The overall risk for this project is quite low. This is primarily due to the fact that it is entirely in
software development and utilizing demos already freely provided online. The biggest risk factor
that is foreseen is the poor reception and feedback of our contributions to the public projects. This
could occur for a number of reasons such as poor maintainer support, unaligned goals for the
future of the project, or already generated documentation and additions.

To mitigate this risk, we have worked with our client to develop another publication strategy if the
primary public repositories do not favor our contributions. This would involve publishing our
additional documentation and improvements on our own. Since each of the projects is
open-source, meaning free to distribute and alter, there would be no licensing issues in doing this
and while it would not be a part of the official documentation for the interacting projects, it would
likely still contribute to the Co-Simulation development community as a whole.

In addition, when developing the low level test drivers for the UDP communication protocol and
other devices, our client has been generous in providing support from professionals in that area. As
such, we will likely struggle at first to generate those low elvele drives, but with the support of the
consultant provided, the majority of those risks should be mitigated due to having a professional to
bring any issues to.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

5. Initial Cosim demo and environment setup
a. Have everyone on the team complete the demo application

6. Modifying the Demo
a. Make a team pull request to the Cosim-Demo repo and get feedback
b. Have every member of the team understand and change the memory-mapped

register data to the Real Time Clock (RTC)
c. Make contact with the Cosim-demo repository managers to gain feedback on the

additional features and documentation
d. Publish a centralized startup documentation for the Cosim-demo repository
e. Create a list of milestones for implementing the thread framework described by

the client.
7. Implement working UDP communication capabilities for bi-directional communication

between TLM and Linux environment
a. Determine a candidate device for bi-directional memory mapped simulation form

a hardware and firmware side
b. Create a comprehensive document for adding new simulated devices from a

hardware (SystemC side) and software (Linux Buildroot in QEMU) side.
8. Public Contributions

a. Make 3+ documentation contributions to public Xilinx Co-Simulation repositories
b. Augment the initial demo application repo (Cosim-demo) to include additional

bi-directional UDP capabilities

2.4 PROJECT TIMELINE/SCHEDULE

2.5 PROJECT TRACKING PROCEDURES

As our project progresses, we have chosen to use a Trello board to track our progress. This allows
us to break each task out and assign it to members of our team to complete one at a time. It also

allows us to better see a bird’s eye view of our project to better gauge our progress and current
successes and other bottlenecks that might be occurring. We are also utilizing Discord to
communicate and share documentation, links, and other documents as of now. This allows us to
work collaboratively in that space and provide a single channel of communication and resources for
the project. Finally, we foresee using a shared Gitlab group to house the repositories we need to
submit changes to the relevant repositories we plan to contribute to. These would also include our
internal development code and documentation that we generate in the process as well. These tools
will make up the primary sources of communication and collaboration for our development team
during this project.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Effort Estimate
(Team Combined

Hours)

Description Reason

Environment setup 20 This involves getting a
shared server setup,

meetings times
established, website

updated,
communication

mediums, and other
team dynamics. Along

with familiarization
with Linux and the
tools being used.

Getting a server
acquired and team

dynamics should be
trivial. Learning the
tools and getting the
basic demo up and

running for each team
member will take

time as these tools are
new to all members of

the team.

Modifying The Demo 45 Making a change to
the demo to
demonstrate

understanding and as
a starting point to

extending the demo
with new

functionality.

Modifying the demo
should be a slightly

difficult undertaking.
Team members will
still be learning the
tools and exploring

bugs and other errors
that are encountered.
In addition, once the
demo is modified, it

needs to be then
replicated by all

members of the team
to ensure that all

members understand
the process and

reasoning behind
changes to contribute

going forward.

UDP Protocol 60 Implement a
bi-directional UDP

protocol so that time
series data devices can

be played back and
communication/data
can be sent from both

the hardware and
software virtual

interfaces using the
TLM port of the

QEMU simulation.

This protocol will
allow for

bi-direcitonal
communication

between the
simulated hardware
and the software on

the Xilinx ARM
processor in QEMU.

As such , ensuring the
standard practices of

communicating in
TLM will be new for

this task and ensuring
the communication is

working
bi-directionally will
require significant

testing and
documentation.

Thread Protocol ? ? ?

Additional Sensor
Example

90 Implement an
additional sensor as

an example to further
bolster the offering of

the Cosim demo
repository. This is to
allow an easier and

wider range of
opportunities for

others to learn the
development tools..

This involves digging
into Linux driver

implementation and
datasheets for

memory-mapped
sensors. IT then also

involves
implementing said
sensor in SystemC
and in the software
side of the driver in

QEMU and buildroot
for simulation. As no
members of the team

have experience in
these skills, it will be a

significant learning
curve.

Public Cosim Demo
Documentation

30 Make multiple public
improvements to the
little documentation
that is provided for

the Cosim demo
repository and other

tooling utilized
during the project.

This involves
communicating with

members of the
community which can

be slow at times. It
also is important to
compose detailed

documentation, as it
is what can help

2.7 OTHER RESOURCE REQUIREMENTS

For this project, a shared computing environment is needed for our team to effectively develop the
additions to the software described. As such, since we are simulating complex processors in parallel
and hardware devices attached to them, this requires a significant amount of resources. As such, a
powerful Linux server is needed to support these computing needs for our project. This is currently
being provided by the Department of Electrical and Computer Engineering and guaranteed until
the completion of our project. A team communication platform for weekly meetings is also
required to communicate with one another. A Discord server was chosen due to its no cost and
open environment. This allows us to work remotely, hold meetings, and share information in real
time with one another when we are not able to meet in person.

2.8 FINANCIAL REQUIREMENTS

This project will in all provide no financial requirements. The shared computing resources have
been generously provided by the Department and all of the software needed is free and
open-source. Any professional consultants provided are done so free of charge though the teams of
the client’s company(Collin’s Aerospace).

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Various different simulation technologies already exist for simulating both processor behavior and
respective simulation environments individually/separately. However, the “cosim” model combines
the two and though this technology exists, there lacks both sufficient documentation and
demonstrations.

In essence, the cosim model as a toolchain is relatively new and therefore improving
documentation and demos will be a large focus of this project in order to make the technology
more approachable to prospective users.

others to solve issues
and learn the tools.

Documentation
should not be rushed,

although should be
trivial if the tools are

known.

The majority of project work will be focused on extending the usefulness of an already existing
simulation environment. This means that background research is somewhat limited in its scope to
learning about the technologies already being used by the system. The project group is currently
focused on learning about those technologies.

Background literature for this project includes SystemC tutorials, a Xilinx emulator user guide,
co-simulation documents, and any other work found on the open source forums.

Literature:

Banerjee, Amal, and Balmiki Sur. “SystemC-AMS and SystemC Combinations.” SystemC and
SystemC-AMS in Practice, 2013, pp. 449–455., doi:10.1007/978-3-319-01147-9_17.

Ammari, Ahmed Chiheb, et al. “HW/SW Co-‘Esign for Dates Classification on Xilinx Zynq
SoC.” 2020 26th Conference of Open Innovations Association (FRUCT), 2020,
doi:10.23919/fruct48808.2020.9087548.

Xilinx. “Xilinx Quick Emulator User Guide.” 2019.

3.2 DESIGN THINKING

Co-sim technologies exist yet are not well known within the target community. A relatively new
tech, improving documentation and demos will make cosimulation tech more approachable for
the community and hopefully allow for increased usage of these technologies among target
constituents.

Because another large deliverable of the project is implementing further system logic and driver
support, detailed and thorough documentation and demo of the tech will again be imperative to
project success.

3.3 PROPOSED DESIGN
Thus far, our team has been focused on getting the co-sim demo running on each of our devices.
Project scope for the semester includes understanding the various concepts/technologies, project
documentation, and implementing some basic extensions to the system.

The first extension our group will be focused on this semester is implementing a transmit use case
on top of an existing use case that receives data. Currently, the processor only receives data from
simulated firmware. We will be implementing the opposite - the processor will be able to transmit
data to the simulated firmware.

The second extension our group will be implementing is a UDP bridge in order to send and receive
data from the SystemC model. This bridge will be used to support dataflows in the memory map
interface model.

Our team will demonstrate the functionality of a UDP connection by generating a demo of an
arbitrary sensor modeled in SystemC correctly functioning with an off the shelf Linux peripheral
driver. This demonstration, coupled with documentation describing the purpose of the co-sim, will
be valuable to companies who are evaluating the use of the co-sim environment for testing their
code.

Due to the need for replication of our project, it is also imperative that our group creates and
maintains detailed documentation of work being done throughout the project timeline. Existing
documentation on these technologies is difficult to read/hard to find. Therefore, creating readable
and more extensive documentation is a must.

3.4 TECHNOLOGY CONSIDERATIONS

Most technology decisions regarding this project have already been made. One strength of the
project is that the co-simulation model offers increased flexibility as compared to a “real world +
simulation” model. Project work will potentially answer client needs more accurately because team
members only need a computer with an internet connection - both of which have already been
established for all members of the team. The alternative “real world + simulation” model would
require work to be done in a specific location(s) as opposed to remotely using hardware such as an
FPGA.

The need to collaborate remotely has led our team to utilize a common, headless Ubuntu server
like mentioned above.

As previously mentioned, various simulators already exist for simulating processor and
environment behavior. That in consideration, QEMU and SystemC + TLM were both adopted by
the client and therefore outside of our group’s scope for further consideration.

3.5 DESIGN ANALYSIS

Design analysis is fairly preemptive at this point in the project. Our current design analysis process
will focus on risk identification and mitigation to ensure project success moving forward. We
suspect the proposed design (Section 3.3) will be fairly successful because of the simple fact that
project work in the “engineering department” will focus on extending an already existing system
like previously mentioned.

3.6 DEVELOPMENT PROCESS

Though this project doesn’t fit into any one “specific” development process, it most closely
resembles the Agile approach because it is being completed through small, iterative progress
chunks. Our group has chosen to use Trello to track progress.

This development process was selected because it allows for high client involvement and is easily
applicable to the system when other development processes would make less sense logically.

3.7 DESIGN PLAN

Project focus for this semester will mainly center around improving demos and documentation to
improve approachability of cosim technology. Next semester, project focus will shift to adding
increased functionality to the system in the form of additional driver modules.

4 Testing
Testing is an extremely important component of most projects, whether it involves a circuit, a
process, or software.

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study or acceptance testing for functional and non-functional requirements).
2. Define/identify the individual items/units and interfaces to be tested.
3. Define, design, and develop the actual test cases.
4. Determine the anticipated test results for each test case

5. Perform the actual tests.
6. Evaluate the actual test results.
7. Make the necessary changes to the product being tested

8. Perform any necessary retesting
9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you have
determined.

4.1 UNIT TESTING

– Discuss any hardware/software units being tested in isolation

We test each individual demo component on its own. The SystemC TLM models for each demo can
also be tested individually prior to attaching the appropriate Linux driver. As our project mainly
consists of implementing minor contributions to existing infrastructure, most of our work will
tightly interface with surrounding components and won’ be usable in isolation.

4.2 INTERFACE TESTING

The primary interface we have to worry about is the connection between QEMU and our SystemC
model. As the nature and specifics of this connection are outside of the scope of our project, we
don’t need to substantially test it. We do however need to ensure that our SystemC work is
accurately being translated into the QEMU environment using this connection.

4.3 ACCEPTANCE TESTING
How will you demonstrate that the design requirements, both functional and non-functional are
being met? How would you involve your client in the acceptance testing?

Our client has sent us a demo that has been created by the community to test. If we are able to
test this and it functions correctly, we will document that and give a presentation to our client to
ensure we have documented it correctly. In the future, when we have built more part to this
project, we will functionally test all of them and give a demonstration to our client to ensure that
they are up to professional standards.

4.4 RESULTS

No results yet.

5 Implementation
Each section of our deliverables are neatly divided into demos. For instance, our client would like
us to demo a working out of the box Linux driver running on our co-sim platform. So, our team will
start our implementation with a focus on our Client Demos. Our team will lay out all of the
requirements for each demo, and then implement them iteratively to add the needed functionality.

To actually begin implementing each demo, we will begin by researching the existing material
already in the project. Our demos seek to build upon open source repositories, and these projects
already have significant amounts of documentation and publicly available correspondence
regarding potential tasks.

Our team will utilize all of the available resources associated with each project to make a
determination on how the feature will fit into the demo. Next, we will reach out to the maintainers
to get feedback on our proposed changes. Understanding how the maintainers of the repository
want our changes to fit into the existing demo is key to us properly implementing the change.

From this point, we can actually go ahead and make our changes. Much of our changes will be in
the SystemC demo code that is written, in order to add additional functionality to QEMU memory
interface. We can then test our changes on the demo by using basic Linux memory access
commands to verify that we are adjusting memory as required.

Finally, these open sourced projects require a high amount of documentation. We are seeking to
expand the documentation already present, as well as generate new documentation so that these
repositories can be more accessible. So, our future implementation will need to involve growing the
quantity and quality of documentation for each different demo, and then publishing these
documents appropriately such that they can be used by the community in the future.

6 Closing Material

6.1 CONCLUSION

So far, our team has demonstrated proficiency executing a co-sim demonstration. We have begun
the process of learning more about the toolchain, and will soon begin experimenting with alternate
SystemC models driving our QEMU memory model. This will naturally progress us into our first
major deliverable: demonstrating a working Linux Peripheral driver executing via Cosim.

Going forward, our team will continue to adopt an iterative approach in adding functionality to the
Cosim system. Our team will also be reaching out to open source projects and identifying areas
where we can expand the existing offering. This expansion will be done in the form of new demos,
documentation, or additional features.

6.2 REFERENCES

J. Komlodi and V. Garhwal, “Co-simulation,” Confluence. [Online]. Available:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/862421112/Co-simulation. [Accessed:
09-Mar-2021].

Xilinx, “systemctlm-cosim-demo,” GitHub. [Online]. Available:
https://github.com/Xilinx/systemctlm-cosim-demo. [Accessed: 09-Mar-2021].

6.3 APPENDICES

Figure 1 - Xilinx QEMU Mixed Simulation Environment

Xilinx. “Xilinx Quick Emulator User Guide.” 2019, p. 37.

